sync/atomic 介绍
当我们想要对某个变量并发安全的修改,除了使用官方提供的 mutex,还可以使用 sync/atomic 包的原子操作,它能够保证对变量的读取或修改期间不被其他的协程所影响。
atomic 包的原子操作是通过 CPU 指令,也就是在硬件层次去实现的,性能较好,不需要像 mutex 那样记录很多状态。 当然,mutex 不止是对变量的并发控制,更多的是对代码块的并发控制,2 者侧重点不一样。
sync/atomic 操作
atomic 包有几种原子操作,主要是 Add、CompareAndSwap、Load、Store、Swap。
Add
atomic 的 Add 是针对 int 和 uint 进行原子加值的:
func AddInt32(addr *int32, delta int32) (new int32) func AddUint32(addr *uint32, delta uint32) (new uint32) func AddInt64(addr *int64, delta int64) (new int64) func AddUint64(addr *uint64, delta uint64) (new uint64) func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
CompareAndSwap
比较并交换方法实现了类似乐观锁的功能,只有原来的值和传入的 old 值一样,才会去修改:
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool) func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool) func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool) func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool) func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool) func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
需要注意的是,CompareAndSwap 有可能产生 ABA 现象发生。也就是原来的值是 A,后面被修改 B,再后面修改为 A。在这种情况下也符合了 CompareAndSwap 规则,即使中途有被改动过。
Load
Load 方法是为了防止在读取过程中,有其他协程发起修改动作,影响了读取结果,常用于配置项的整个读取。
func LoadInt32(addr *int32) (val int32) func LoadInt64(addr *int64) (val int64) func LoadUint32(addr *uint32) (val uint32) func LoadUint64(addr *uint64) (val uint64) func LoadUintptr(addr *uintptr) (val uintptr) func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
Store
有原子读取,就有原子修改值,前面提到过的 Add 只适用于 int、uint 类型的增减,并没有其他类型的修改,而 Sotre 方法通过 unsafe.Pointer 指针原子修改,来达到了对其他类型的修改。
func StoreInt32(addr *int32, val int32) func StoreInt64(addr *int64, val int64) func StoreUint32(addr *uint32, val uint32) func StoreUint64(addr *uint64, val uint64) func StoreUintptr(addr *uintptr, val uintptr) func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
Swap
Swap 方法实现了对值的原子交换,不仅 int,uint 可以交换,指针也可以。
func SwapInt32(addr *int32, new int32) (old int32) func SwapInt64(addr *int64, new int64) (old int64) func SwapUint32(addr *uint32, new uint32) (old uint32) func SwapUint64(addr *uint64, new uint64) (old uint64) func SwapUintptr(addr *uintptr, new uintptr) (old uintptr) func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
我们填写一个示例来比较下互斥锁和原子操作的性能。
var x int64 var l sync.Mutex var wg sync.WaitGroup // 普通版加函数 func add() { // x = x + 1 x++ // 等价于上面的操作 wg.Done() } // 互斥锁版加函数 func mutexAdd() { l.Lock() x++ l.Unlock() wg.Done() } // 原子操作版加函数 func atomicAdd() { atomic.AddInt64(&x, 1) wg.Done() } func main() { start := time.Now() for i := 0; i < 10000; i++ { wg.Add(1) // go add() // 普通版add函数 不是并发安全的 // go mutexAdd() // 加锁版add函数 是并发安全的,但是加锁性能开销大 go atomicAdd() // 原子操作版add函数 是并发安全,性能优于加锁版 } wg.Wait() end := time.Now() fmt.Println(x) fmt.Println(end.Sub(start)) }
总结
atomic 很多时候可能都没有使用上,毕竟 mutex 的拓展性比较好,使用起来也比较友好。但这并不妨碍我们对极致性能的追求,有时候,细节决定了性能!
atomic包提供了底层的原子级内存操作,对于同步算法的实现很有用。这些函数必须谨慎地保证正确使用。除了某些特殊的底层应用,使用通道或者sync包的函数/类型实现同步更好。
《本文》有 0 条评论